Molten Carbonate Fuel Cells for Electrolysis

نویسندگان

  • LAN HU
  • John Lennon
چکیده

The molten carbonate fuel cell (MCFC) has evolved to current megawatt-scale commercial power plants. When using the fuel cell for electrolysis (MCEC), it provides a promising option for producing fuel gases such as hydrogen, via water electrolysis, and syngas, via co-electrolysis of water and carbon dioxide. The molten carbonate cell can thereby operate reversibly as a dual energy converter for electricity generation and fuel gas production. The so-called reversible molten carbonate fuel cell (RMCFC) will probably increase the usefulness of the system and improve the economic benefits. This work has investigated the performance and durability of the cell in electrolysis and reversible operations to demonstrate the potential viability of the MCEC and the RMCFC. A lower polarization loss is found for the electrolysis cell than for the fuel cell, mainly due to the NiO oxygen electrode performing better in the MCEC. The stability of the cell in long-term tests evidences the feasibility of the MCEC and the RMCFC using a conventional fuel cell set-up, at least in labscale. This study also elucidates the electrode kinetics of hydrogen production and oxygen production to better understand the two important reaction processes that determine the performance of the electrolysis cell. The experimentally obtained partial pressure dependencies for hydrogen production are high, and they do not reasonably satisfy the reverse pathways of the hydrogen oxidation mechanisms. The reverse process of an oxygen reduction mechanism in fuel cell operation is found to suitably describe the oxygen production in the MCEC. To evaluate the effect of the reverse water-gas shift reaction and the influence of the gas phase mass transport on the porous Ni electrode in the electrolysis cell, a mathematical model based on the Maxwell-Stefan diffusion equations is applied in this study. When the humidified inlet gas compositions enter the current collector the decrease of the shift reaction rate increases the electrode performance. The model well describes the polarization behavior of the Ni electrode when the inlet gases have low contents of reactants. The experimental data and modeling results are consistent in that carbon dioxide has a stronger effect on the gas phase mass transport than other components, i.e. water and hydrogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exergy Analysis of a Molten Carbonate Fuel Cell-Turbo Expander-Steam Turbine Hybrid Cycle

Exergy analysis of an integrated molten carbonate fuel cell-turbo expander-steam turbine hybrid cycle has been presented in this study. The proposed cycle has been used as a sustainable energy approach to provide a micro hybrid power plant with high exergy efficiency. To generate electricity by the mentioned system, an externally reformed molten carbonate fuel cell located upstream of the combi...

متن کامل

New Mathematical Modelling and Dynamic Simulation of a Molten Carbonate Fuel Cell

In this study, a more accurate model of fuel cell of molten carbonate was also used that was determined input and output control variables and investigated the behavior of the system with respect to those variables. A more complete kinetic is also implemented for increasing the effectiveness of the presented paper. The input variables include fuel flow rate of cell which is methane and cell vol...

متن کامل

Electro-deposition and re-oxidation of carbon in carbonate-containing molten salts.

The electrochemical deposition and re-oxidation of solid carbon were studied in CO3(2-) ion-containing molten salts (e.g. CaCl2-CaCO3-LiCl-KCl and Li2CO3-K2CO3) at temperatures between 500 and 800 °C under Ar, CO2 or N2-CO2 atmospheres. The electrode reactions were investigated by thermodynamic analysis, cyclic voltammetry and chronopotentiometry in a three-electrode cell under various conditio...

متن کامل

Modeling and Process Analysis of a Biomass Gasifier-Molten Carbonate Fuel Cell-Gas Turbine-Steam Turbine Cycle as a Green Hybrid Power Generator

Fuel cell-based hybrid cycles that include conventional power generators have been created to modify energy performance and output power. In the present paper, integrated biomass gasification (IBG)-molten carbonate fuel cell (MCFC)-gas turbine (GT) and steam turbine (ST) combined power cycle is introduced as an innovative technique in terms of sustainable energy. In addition, biomass gasificati...

متن کامل

Molten Carbonate Fuel Cells

Molten carbonate fuel cells use carbonate salts of alkali metals as electrolyte. Due to the highly corrosive nature of the electrolyte, various countermeasures are being developed. MCFCs are expected for high-efficiency power generation systems using hydrocarbon fuels, such as natural gas and coal gas. This article describes the mechanisms of operation and cell degradation, as well as the featu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016